
Speedy and Weighted A* Implementations
for the Grid-Based Path-Planning Competition

Maxwell C. Renke
University of New Hampshire

Durham, NH 03824 USA
mcl83@wildcats.unh.edu

Abstract

The Grid-Based Path-Planning Competition is an effort to
facilitate comparison between existing approaches to path-
planning through the use of widely available benchmark
problems. Speedy and Weighted A* are two algorithms that
perform suboptimal search and result in faster computation
time in exchange for less than optimal final path costs. This
paper will discuss the implementation of these algorithms and
analyze the trade-off between optimal final path costs and
computation time. The results of these algorithms will also
be compared against existing approaches made available by
the Grid-Based Path-Planning Competition. This paper also
exists to fulfill a final project requirement for the Univer-
sity of New Hampshire Computer Science Department course
CS830 Introduction to Artificial Intelligence.

Introduction
The Grid-Based Path-Planning exists in a wide variety of ap-
plications in both the academic and video game industries.
In academia the focus is on finding the optimal (shortest)
cost in the fastest time with the fewest resources. Addition-
ally, path planning is required in virtually any video game
that need characters to move in the world in a meaningful
way. Speed is of the greatest necessity in these games as
plans must be found in as short a time as possible as to not
adversely affect game-play; but they must also be as correct
as possible as to not seem unnatural to the player. Subopti-
mal search is an approach that exists as a trade off between
optimal path cost and state space reduction which results in
faster computation time. Suboptimal search has not been a
focus in the Grid-Based Path-Planning Competition in the
past. This paper seeks to provide suboptimal approaches to
the competition and compare the results against existing op-
timal approaches to attempt to quantify the speed versus op-
timality trade-off. This paper is mainly focused on the total
time to find the path and the suboptimality as a means of
comparison between other entries.

Grid-Based Path-Planning Competition
The Grid-Based Path-Planning Competition provides a test
framework and benchmark problems to compare entries us-
ing a variety of metrics. For each test a map is provided

Copyright c© 2016, Maxwell Renke. All rights reserved.

along with a scenario, which is a list of start and goal loca-
tions as well as the optimal length for the given path. These
metrics include the total time to find the path, the total time
to find the first 20 moves (some entires will only report the
path one step at at time), the resulting path length, the subop-
timality (which is the ratio between the resulting path length
and the optimal path length for the given path), and whether
the path is valid or not.

The Grid-Based Path-Planning Competition specifies the
maps as no larger than 2048x2048 cells that are 8-way con-
nected (i.e. diagonally moves are allowed) with some cells
being blocked. A diagonal move is specified as sqrt(2) in
an optimal path. Testing a scenario consists of the pre-
processing phase and the testing phase. During the pre-
processing phase an entry can load the map and store any
information to be used during the testing phase. The met-
rics used to determine performance are taken from the test-
ing phase where the scenario is loaded and the testing har-
ness finds paths based on the given scenario. Speedy and
Weighted A* do not make use of the pre-processing phase
except to perform some initialization.

Benchmark problem sets provided by the Grid-Based
Path-Planning Competition consist of several small exam-
ples, mazes, randomly filled grids, as well as grid maps from
the video games Dragon Age Origins, Warcraft 3, and the
original Starcraft.

Optimal versus Suboptimal Search

Optimal and suboptimal searches both attempt to reduce the
search space as much as possible to reduce the number of
state that need to be eventually expanded. Optimal searches
do this much more carefully than suboptimal searches
because an optimal search can only eliminate a state if
it is guaranteed to not be part of the optimal solution. In
contrast, suboptimal solutions can eliminate states much
more liberally through the use of greedy actions. Greedy
actions are actions that when examined locally are the best
option and are chosen without consideration of the rest of
the problem. This usually results a much smaller search
space as compared to optimal searches and thus can find
solutions faster.

Heuristics
Both optimal and suboptimal searching rely heavily on
heuristic functions. Heuristic functions act as an estimate of
the amount of search space that needs to be explored before
the algorithm has found a valid path. The key difference be-
tween a heuristic used in an optimal versus suboptimal so-
lution is the property of admissibility. An admissible heuris-
tic will never over-estimate the remaining cost to reach the
goal. Likewise an inadmissible heuristic is one that can over-
estimate the goal.

Octile Distance
One popular heuristic function is known as Octile Dis-
tance. This distance calculation takes into account that a
valid move exists in only 8 possible directions with diagonal
moves only being made at 45 degree angles. This heuristic
is defined as

max (x , y) + (s q r t (2) −1)∗min (x , y)

This provides a better estimate than say Euclidean Distance
for the Grid-Based Path-Planning Competition benchmarks.

A*
A* is an optimal algorithm that uses an evaluation function
to determine which state in the state space to expand next in
order to reach the goal node. The evaluation function for A*
is

f (n) = g (n) + h (n)

where f(n) is the evaluation function, g(n) is the cost from
the start state to the current state n, and h(n) is the heuristic
function at state n.

Below is pseudo-code for A*.

g = goal state
closed list = empty
open list = start state
while open list is not empty

retrieve state curr from open list with lowest f()
if curr == goal state

return
get valid successor states from curr
for each successor state

if not present in closed list
create new state s
s.parent = curr
s.g = curr.g + 1
s.h = octile distance(s,g)
s.f = s.g + s.h //evaluation function
add s to closed list
add s to open list

Note that a valid successor is a successor that is not
blocked in the map and can be reached via non-blocked
cells in the map. When the algorithm returns the path from
the goal state to the start state can be found by following
the parent pointers. This path can be reversed to give the

path from the start state to the goal state (which is what the
Grid-Based Path-Planning Competition requests).

Speedy
Speedy performs a search much in the same way A* does,
but with a different evaluation function. Instead of using a
g(n) and h(n) value, Speedy uses a new evaluation function

f (n) = d (n)

where d(n) is simply

max (x , y)

This estimates the number of moves required to reach the
goal considering adjacent moves and diagonal moves the
same even though the moves cost different values in the
final path. Thus, Speedy will expand only the nodes that
get closer and closer to the goal state, greatly reducing the
search space. Speedy is implemented in the same manner as
A*, but with the evaluation function replaced.

Weighted A*
Weighted A*, as the name suggests, is a slight variation on
the A* algorithm. Weighted A* uses the nearly the same
evaluation function as A*

f (n) = g (n) + w∗h (n)

where w is a value greater than 1 used to influence the
heuristic. The heuristic in this case is still the Octile Distance
heuristic but since the value of w*h(n) will always be greater
than the true estimate to the goal, this heuristic is inadmis-
sible and thus will result in suboptimal paths. However, this
change will greatly reduce the state space. Weighted A* is
implemented in the same manner as A*, but with the evalu-
ation function replaced.

Implementation
Speedy and Weighted A* all use the same structure (A*,
shown above) but their evaluation functions differ. Entries
to the Grid-Based Path-Planning Competition are written in
C++. The open list in the Speedy and Weighted A* entries
are implemented used the C++ standard library heap, sorted
by comparing the algorithm’s respective evaluation function.
The closed list is implemented in an integer array with each
element in the array representing a grid cell in the map. This
eliminates the need to store the state in the closed list as
each element in the array only needs to express a single bit -
whether the state is in the closed list or not. This simplifies
the check during the algorithm and helps improve perfor-
mance.

While the implementations for Speedy and Weighted A*
achieve desirable performance when finding solutions even
on very large benchmarking problems, there is a lot of per-
formance that is still left on the table. Due to time con-
straints, specialized data structures were not utilized for
the open list. While a heap does achieve O(log(n)) perfor-
mance, this performance could be improved to constant time

through the use of the bucketlist data structure. This data
structure separates several ”buckets” (or arrays) on value
boundaries and inserts states into each bucket according to
their evaluation function. When an state is retrieved from the
table the bucketlist need only return the state in the lowest
numbered bucket, which is guaranteed to be the lowest f()
value inserted. This brings the open list retrieval operation to
constant time at the cost of perhaps some imprecision on the
value boundaries. It should be noted that entries to the Grid-
Based Path-Planning Competition that use a normal heap or
a bucketlist are specified, as they have very different mem-
ory requirements and that is a factor in the competition.

Performance Evaluation

At the time this paper was written the deadline for the Grid-
Based Path-Planning Competition had just passed therefore
no results from the current competition can be included in
this analysis. The results from past entries are included in
this analysis and one particular entry, Rabin A*, was se-
lected to be run against the same benchmarks as Speedy
and the Weighted A* implementations. Rabin A* is a tra-
ditional A* implementation that focused on finding optimal
paths (suboptimality = 1). The results below were collected
on the University of New Hampshire Computer Science De-
partment UNIX server agate.

Below are some graphs displaying the total time and aver-
age suboptimality of Speedy, several variations of Weighted
A*, and Rabin A* against two distinct problem sets. The
first problem set is a collection of Warcraft 3 maps labeled
”wc3maps512”. The second problem set is a collection of
randomly generated maps labeled ”random”. The Weighted
A* algorithms are listed as w1 1, w4, and w5 with weight
values equal to 1.1, 4, and 5 respectively.

Below are tables showing an additional summary of
other map instances, including maps from Starcraft (sc1).

Total Time - averaged across map instances
Speedy w1 1 w4 w5 RabinA*

wc3maps512 1.164 1.300 1.311 1.315 5.266
random 0.365 0.460 0.461 0.463 16.592

sc1 7.062 7.370 7.541 7.640 41.883

Suboptimality - averaged across map instances
Speedy w1 1 w4 w5 RabinA*

wc3maps512 1.135 1.123 1.124 1.124 0.950
random 1.115 1.084 1.085 1.085 0.999

sc1 1.249 1.223 1.224 1.224 0.999

Conclusion
It is clear that there does exist a trade-off between optimal
final path cost and computation time. The extent of this
trade-off is what is interesting and algorithms such as
Speedy and Weighted A* are clearly speed improvements
to path-planning if one is willing to give up a certain degree
of suboptimality. Since the Grid-Based Path-Planning
Competition is focused on ”real world” applications an
argument can be made that some degree of suboptimality
can be tolerated if the speed benefit provided is of great
benefit to the original application. This is certainly the case
in video game applications, as well as perhaps some real
world applications that are not as concerned with perfect
precision.

Speedy and all permutations of Weighted A* find
solutions faster than RabinA*. Speedy and Weighted A*
(w=1.1) perform the closest to optimal in most cases.
Weighed A* where w=4 and w=5 sometimes perform faster
than Speedy and Weighted A* (w=1.1) but provide even
less optimal paths.

Below is a graph from the 2014 Grid-Based Path-Finding
Competition results page comparing various solution’s
memory usage and the maximum time per segment metric
(total time divided by the number of map instances for
Speedy and Weighted A*). From the results provided in this
paper it is reasonable to expect Speedy and Weighted A* to
appear in the bottom left corner of the graph, using about
1MB of memory and finding the path between 1 and 101

ms. This seems like a useful area to explore in the future for
the Grid-Based Path-Planning Competition.

Speedy and Weighted A* are viable suboptimal search
algorithms that greatly reduces the amount of time to find a
path while only slightly affected optimality.

Extensions
As mentioned previously the implementations entered to
the Grid-Based Path-Planning competition for Speedy and
Weighted A* have some areas where performance could po-
tentially be improved. The use of the standard library heap
function in C++ is effective enough to get results but could
be replaced with a more refined and customized implemen-
tation.

The use of a bucketlist was not explored in the context
of Speedy and Weighted A*. A bucketlist implementation
would certainly decrease the amount of time to find a path
but it would potentially add some additional suboptimality to
the algorithms due to the nature of the imprecision in select-
ing buckets. This additional trade-off could be examined.

Further results from the competition would have been a
good detail to include in the report.

This paper only examines Weighted A* with weights of
1.1, 4, and 5. Other weights may have a different affect on
the performance of these algorithms, and there is potentially
that as the weights increase the suboptimality increases or
the suboptimality may plateau.

Finally, attempting to find a suboptimal bound on Speedy
Weighted A* has yet to be explored. If a bound can be found
for these algorithms it can help in assessment of when the
use of one of these suboptimal solutions is being examined
for use in a real world application.

Final Remarks
In the University of New Hampshire Computer Science
Department course CS830 Introduction to Artificial intelli-
gence A* was discussed in great depth with multiple assign-
ments given to implement A* for a variety of domains. This
work aided in the implementation of Speedy and Weighted
A* as entries to the Grid-Based Path-Planning Competition.

In terms of this paper as a final project I would like to
comment on the scope and things I might have done dif-
ferently. The scope of this paper is somewhere between too
narrow and just narrow enough to return meaningful results.
Unfortunately at the start of the project I did not have clear
performance metrics or goals for which results I wanted to
show. This made writing this paper difficult to complete. I
was focused on getting a working entry for the Grid-Based
Path-Planning competition rather than obtaining meaningful
results from my research. While I believe I was successful in
obtaining meaningful results I could have shaped my project
around the results much better.

Acknowledgments
Special thanks to Professor Wheeler Ruml from the Univer-
sity of New Hampshire Department of Computer Science
Department and to Dr. Nathan Sturtevant from the Univer-
sity of Denver, Grid-Based Path-Planning Competition.

References
Jordan Thayer, Wheeler Ruml Bounded Suboptimal Search:
A Direct Approach Using Inadmissable Estimates Depart-
ment of Computer Science, University of New Hampshire.
2011.

Christopher Wilt, Wheeler Ruml Speedy versus Greedy
Search (SoCS-14). 2014

Ethan Burns, Matthew Hatem, Michael J. Leighton,
Wheeler Ruml Implementing Fast Heuristic Search Code
Department of Computer Science, University of New
Hampshire. 2012.

